Надежное хранение данных. Устройства хранения информации. Ограничение доступа к информации

Хранение носителей информации

Понятие «хранение» в нашем случае в значительной степени корреспондируется с термином «сохранность». Хранение – основа обеспечения сохранности. Дефиниция «сохранность » (в соответствии с Российским стандартом 7.50-90. Консервация документов. Общие требования) трактуется как состояние документа, характеризуемое степенью удержания эксплуатационных свойств. Не вызывает сомнений, что любой документ зафиксирован на некотором конкретном носителе. Если документ повреждён, разрушен и в итоге может быть утрачен, то вопросы обеспечения хранения и сохранности ставить бессмысленно. В информационных службах хранимые материалы размещаются в специальных хранилищах (фондохранилищах, кинохранилищах, архивах и т.п.).

Например, первым звуковым хранилищем считают созданную в США в 1877 году лабораторию Т.А. Эдисона, в Европе – это Венский фонограммархив, созданный в 1899 году.

Сохранность данных в первую очередь зависит от свойств материалов носителей информации. Так, фотографические материалы боятся высоких температур и их резких колебаний, света, пыли, сырости и определённых химикатов. Носители с магнитным покрытием подвержены воздействиям магнитных и электромагнитных полей. Они хотя и в меньшей степени, чем предыдущие, но зависят от климатических условий хранения.

Грампластинки должны храниться строго вертикально в секциях по 35–40 шт. Звукозаписи хранят вдали от источников тепла и прямых солнечных лучей. Оптимальная температура в хранилище звукозаписей должна быть около 15°С, относительная влажность воздуха – 50%.

Магнитные ленты следует оберегать от воздействия пересыхания и магнитных полей. Рекомендуется их помещать в целлофановые пакеты и хранить в не запылённой атмосфере, защищённой от прямого доступа солнечного света, не подвергая воздействию сильных магнитных полей, которые создаются различными электрическими устройствами. Так, в стандарте Великобритании (1988) рекомендуется поддерживать следующие условия внешней среды: температура 18–22 ° С, относительная влажность ЗЗ–45 % при длительном хранении, которое определяется как срок, превышающий шесть месяцев.

При длительном хранения информации на магнитной ленте происходит её старение, заключающееся в изменение характеристик носителя. Для магнитных лент из полиэтилентерефталата в течение 50 лет характеристики меняются не более, чем на 10%.

Магнитные ленты, запаянные в полиэтиленовые пакеты и помещённые в коробки на расстоянии не менее 80 мм от любого возможного источника магнитных полей, хранят на специальных полках в вертикальном положении. Гибкие диски (флоппи-диски) размещают в конверты из импрегнированной полимерной плёнки, не накапливающей электростатических зарядов. Изнутри конверты облицовываются мягким материалом, обеспечивающим чистоту поверхности флоппи-дисков.

Для продления срока использования магнитных лент и дисков в помещениях их хранения используют приточно-вытяжную вентиляцию, а в хранилищах и помещениях, где проводятся работы с документами – кондиционирование воздуха с очисткой от вредных примесей (сернистых соединений, оксидов азота и др.), ускоряющих процесс естественного старения компонентов информационного слоя. Материалы, применяемые для покрытия пола, стен и потолков помещений, в которых используются магнитные ленты, не должны собирать пыль и быть её источником. Содержание пыли в воздухе не должно превышать 10 пылинок на 1 кв. см (не более 10 мкм).

Микроформы желательно хранить в несгораемых шкафах, так как они быстрее, чем бумага разрушаются под воздействием воды и огня при пожарах и других стихийных бедствиях. Их рекомендуют хранить при температуре не выше 21°С и низкой относительной влажностью воздуха. Для микроформ постоянного хранения желательна температура не выше 12°С, а для микроформ длительного хранения – не выше 15°С.

Плёнки на целлюлозной основе должны храниться при влажности 15–40%, а плёнки на полиэфирной основе – при влажности 30–40% с максимумом 55–60%. При относительной влажности больше 60% появляется плесень, а при значениях ниже 45% плёнка может деформироваться и стать хрупкой.

При закладке на хранение рулонные микрофильмы должны быть уложены в контейнеры из бескислотного картона, форматные микрофильмы – в конверты из бескислотной бумаги. Требования к стеллажам и шкафам для хранения микроформ и расположение их в помещениях хранилищ, как и требования к самим помещениям определяются ГОСТами.

В Америке микроформы, предназначенные для передачи будущим поколениям, помещают в герметичные капсулы из нержавеющей стали (причём плёнки предварительно кондиционируют при очень низкой влажности), и хранят под землёй в шахте при температуре 10°С. По мнению специалистов такие условия обеспечивают сохранность страхового фонда в течение 1000 и более лет.

Рулонные микрофильмы хранят в алюминиевых коробках, микрофиши – в отдельных бумажных конвертах или прозрачной плёнке, которые помещают в специальные металлические шкафы, располагаемые на расстоянии не менее 1 м от отопительных приборов.

Микрофильмы текущего хранения следует хранить при температуре не более 20°С и относительной влажности 50± 5%.

В целом микроформы требуют, как и оригиналы, тщательного слежения за температурно-влажностным режимом. Неукоснительно выполнение такого правила для негативов – неприкосновенных экземпляров, сохраняемых в условиях пониженной температуры и относительной влажности воздуха.

Всё бόльшую популярность получают носители информации на компакт-дисках. Расчётным путём установлено, что CD - R «болванки» с записью могут сохраняться 75 лет (цианиновый краситель), 100 лет (фталоцианиновый краситель – «золотые» диски) и 200 лет (доработанный фталоцианиновый краситель – платиновые диски). Незаписанный диск хранится 5–10 лет. На CD - RW не существует установленных сроков хранения. Фирмы обычно гарантируют количество циклов перезаписи.

Среди зарубежных специалистов бытует мнение, что в процессе длительного хранения машиночитаемые данные подвергаются внешним воздействиям, способным повлиять на достоверность данных. Возможно искажение, повреждение или удаление машиночитаемых сведений в результате небрежного обращения или несанкционированного доступа к ним. Однако практически установлено, что при строгом соблюдении технологических процессов обработки информации, создании необходимых инструктивных, сопроводительных материалов и т.п. машиночитаемые данные могут не только долговременно сохраняться, но и иметь полную юридическую силу.

Обеспечение сохранности архивных документов — одно из главных направлений работы архивистов. От того насколько верно была выбрана стратегия хранения документов, зависят их физическое состояние и возможности использования в самых разнообразных целях.

Процедуры по обеспечению сохранности электронных документов условно можно разделить на три вида:

  • обеспечение физической сохранности файлов с электронными документами;
  • обеспечение условий для считывания информации в долговременной перспективе;
  • обеспечение условий для воспроизведения электронных документов в так называемом человекочитаемом виде.

Обеспечение физической сохранности файлов

Данный аспект обеспечения сохранности электронных документов — проблема практически решенная, причем для всех видов хранения. Это решение связано не столько с созданием оптимальных условий хранения носителей с электронной информацией, сколько с физическим размещением электронных документов. Для того, чтобы компьютерные файлы не были утрачены, необходимо их хранить в двух или более экземплярах, размещенных на отдельных электронных носителях (рабочем и резервном носителях). Тогда при утрате одного из носителей можно быстро сделать дубликат файлов с оставшегося.

Повсеместная практика хранения электронных документов показывает, что их рабочие экземпляры, как правило, размещаются на винчестере или сервере организации, а резервные копии (экземпляры) могут создаваться на резервном сервере или RAID-массиве, стримерных (магнитных) лентах, магнитооптических и оптических дисках (CD-RW, DVD-RW). Очень немногие владельцы электронных информационных ресурсов выделяют из них архивную часть и хранят ее исключительно на внешних носителях. Это естественно: темпы роста объемов хранимых ресурсов отстают от темпов снижения цен на жесткие диски, что позволяет организациям с большим запасом наращивать свой серверный потенциал.

Важен также выбор типа носителя, его долговечность. Этот выбор зависит от:

  • вида хранимых электронных документов и их совокупного объема,
  • предполагаемого срока хранения документов и обеспечения к ним доступа,
  • характера производства самих носителей и предполагаемых режимов их хранения,
  • требований по обеспечению аутентичности документов.

Например, хранение объемных и сложноструктурированных информационных ресурсов (интегрированных баз данных, гео- и мультимедиа-систем, проектной и конструкторской документации, оригинал-макетов печатных изданий) лучше осуществлять на емких электронных носителях для того, чтобы не нарушать целостность документов.

Для хранения электронных документов в пределах 5 лет вполне надежны любые современные носители информации (в том числе, магнитные дискеты). Главное обращать внимание на репутацию фирмы-изготовителя и страну-производителя, что в итоге ориентирует на стоимость носителя, а также соблюдать минимальные требования к режимам их хранения. Как с любым товаром, здесь действует правило: дешевое хорошим не бывает. По этой же причине при организации долговременного хранения электронных документов следует, например, выбирать оптические диски («болванки»), розничная цена которых будет не ниже 22 — 25 рублей.

Оптические компакт-диски (CD) непритязательны в хранении и вполне надежны в течение 10 — 15 лет. Большего и не требуется. По истечении этого срока неизбежно придется или переписывать файлы на другой тип носителя (т.к. невозможно будет считать информацию с CD), или конвертировать электронные документы в другие форматы и также переписывать на современные и емкие носители.

Оптические диски считаются самыми долговечными носителями. Некоторые производители определяют срок хранения своей продукции чуть ли не в 200 лет. Насколько это обосновано, может показать лишь практика, а она крайне противоречива. С одной стороны, есть свидетельства успешного использования записей на CD в течение 10 — 15 лет, с другой стороны, регулярно появляются сообщения об отказах считывания информации с этих дисков. При этом в последние годы особенно много нареканий поступало на доступ к файлам, записанным на CD-R . Аналитики пока затрудняются дать исчерпывающее объяснение возможных причин: являются ли сбои в чтении файлов следствием ущербности технологии CD-R или каких-то других факторов (нарушения технологии при изготовлении «болванок», нарушения условий и режима хранения, технологической несовместимости устройств записи и считывания информации).

Особое внимание к выбору типа носителя следует уделять в случае возможного использования электронных документов в качестве письменных свидетельств или судебных доказательств. Если нереально придание документам юридической силы с помощью электронной цифровой подписи (ЭЦП), то следует их своевременно скопировать на CD-R — оптические диски с однократной записью информации.

Создание нескольких экземпляров файлов не исчерпывает комплекс работ по обеспечению их сохранности. Чтобы минимизировать затраты на поддержание этих экземпляров, необходимо создать оптимальные условия для хранения носителей информации.

Специфика условий и режима хранения во многом определяется типом электронных носителей. Например, для долговременного хранения магнитных носителей необходимо специальное оборудование, которое бы защищало их от магнитных и электромагнитных воздействий окружающей среды, или же размещать их подальше от мощных источников электромагнитных полей — электродвигателей, обогревателей, лифтового оборудования и т.п. Кассеты (катушки) с магнитными лентами необходимо прокручивать каждые 1,5 года для снятия статического напряжения и предотвращения так называемого копирэффекта. Общими моментами при хранении любых электронных носителей являются размещение их в вертикальном положении, защита от механических повреждений и деформаций, загрязнения и запыления, воздействия экстремальных температур и прямых солнечных лучей .

Очень важно соблюдение температурно-влажностного режима хранения электронных носителей. Общие рекомендации таковы: срок сохранения носителем своих качеств тем больше, чем ниже температура и относительная влажность, при которой он постоянно хранится. Например, хранение полиэфирных магнитных лент при относительной влажности 50% и температуре +11 оC обеспечивает сохранность их свойств в течение 50 лет (ISO 18923). По грубым оценкам, тот же срок для оптических дисков CD-R обеспечивается хранением при относительной влажности 50% и температуре +10 оC (ISO 18927); для дисков WORM — при относительной влажности 50% и температуре +3 оC (ISO 18925).


* Изменение показателя в сутки.
** Изменение показателя в час.

Как видим, низкие температуры способствуют сохранению электронной информации, однако, они совершенно некомфортны для длительной работы человека. При этом также следует учитывать, что если требуется извлечение носителей из хранилища для их использования в нормальных офисных условиях, то они должны будут пройти акклиматизацию. Иначе весьма вероятны ошибки при считывании информации и нарушение структуры (порча) самих носителей. Но для того, чтобы акклиматизировать оптический диск с указанной выше температуры до +23 — 25 оC, потребуется не менее 3 ч. (лучше сутки). Продолжительность акклиматизации магнитной ленты зависит от ее ширины: чем шире лента, тем дольше следует ее акклиматизировать. Следует также иметь в виду, что ленты быстрее достигают температурного равновесия, нежели влажностного баланса. Например, для полудюймовых лент изменение температуры на 5 оС должно проводиться не менее 0,5 часа, а изменение относительной влажности на 10% — не менее 4 суток.

Поэтому при выборе режимов хранения электронных носителей следует учитывать множество факторов и соотносить интенсивность использования носителей, затраты на поддержание режимов хранения (которые могут оказаться весьма существенными) с затратами на регулярное копирование документов на «свежие» носители. Как отмечалось выше, при организации долговременного хранения электронных документов вполне допустим срок в 10 лет для хранения носителей, на которые они записаны. При этом допустимы «офисные» режимы хранения: для магнитных лент — температура +23 оC (ISO 18923), для оптических дисков — +25 оC (ISO 18927), при относительной влажности 50%. «Основные правила работы государственных архивов» устанавливают следующий температурно-влажностный режим в архивохранилищах: температура — +17 — 19 оC, относительная влажность — 50 — 55%. При таких условиях можно рассчитывать на срок хранения дисков CD-R до 20 лет.

Решение проблем, связанных с устареванием аппаратного и программного обеспечения

Если проблемы физической сохранности файлов в настоящее время решаются довольно успешно, то другие аспекты долговременного хранения электронных документов ждут своего методологического обоснования и технологического прорыва. Возникающие проблемы связаны с быстрой сменой и устареванием аппаратного и программного компьютерного обеспечения.

Со временем устройства, с помощью которых информация считывается с внешних носителей, изнашиваются и морально устаревают.

Так, например, исчезли 5-дюймовые магнитные дискеты, а вслед за ними компьютеры перестали оснащать дисководами и драйверами для их считывания. В ближайшее время подобная судьба ожидает 3-дюймовые дискеты: многие современные модели ПК уже выпускают без дисководов к ним. Устройства для считывания информации с оптических дисков, скорее всего, также со временем изменятся.

Приблизительный жизненный цикл подобных технологий — 10 — 15 лет, после чего следует их быстрое вытеснение из производства. Такие технологические изменения нужно учитывать при организации долговременного хранения электронных документов. Желательно каждые 10 — 15 лет копировать документы на новейшие типы электронных носителей. Так что вопрос, сохранят ли свои качества магнитные ленты или оптические диски после 50 лет хранения, теряет остроту. Архивам достаточно гарантий производителей на ближайшие 15 — 20 лет.

Воспроизведение электронных документов зависит в первую очередь от применяемого программного обеспечения:

  • операционной системы,
  • системы управления базами данных (СУБД),
  • текстовых редакторов и процессоров (Word, Pad),
  • графических (ACDSee) и web-браузеров (Internet Explorer, Opera, Firefox),
  • специализированных проектных (AutoCAD, ArchInfo) и гео- приложений (MapInfo),
  • программ, специально разработанных для работы с конкретными базами данных.

Для основной массы делопроизводственных и финансовых электронных документов с небольшими сроками хранения зависимость от смены программного обеспечения не существенна: жизненный цикл программного обеспечения оценивается в 5 — 7 лет. К тому же, многие современные электронные делопроизводственные системы и системы электронного архива организации (например, на базе таких широко известных систем управления документооборотом как DOCUMENTUM или DocsOpen) снабжаются необходимыми конверторами форматов. В кратковременной перспективе для доступа и воспроизведения большинства текстовых, графических и видео документов (но не баз данных или сложных конструкторских систем и мультимедиа) использование таких конверторов самодостаточно.

При организации долговременного хранения электронных документов смена программной платформы может привести к полной утрате документа из-за невозможности их просмотреть. Существует несколько решений данной проблемы:

    Миграция — своевременный перевод баз данных и других электронных документов на современную технологическую платформу, чаще всего в форматы, которые используются в организации для оперативного управления информационными ресурсами (т.н. «пользовательские форматы»). Это сложный и дорогой путь. Как правило, простых конверторов здесь не достаточно. Наибольшие проблемы возникают с базами данных. Обычно к миграции прибегают для обеспечения доступа к оперативным и архивным информационным ресурсам, которые имеют важное значение для деятельности организации и постоянно используются в работе. В государственных архивах этот путь рационально использовать для организации оперативного доступа к наиболее важным или часто используемым архивным электронным ресурсам.

    При организации долговременного хранения баз данных и других электронных документов желательна их предварительная (перед передачей в архив) миграция в «открытые» или «архивные» (страховые) форматы. Для текстовых документов это — txt, rtf, pdf; для графических — tiff, jpg; для таблиц и баз данных — txt, xls, db, dbf. Цель такой подготовки к архивному хранению заключается в том, что в случае необходимости из страховых форматов проще конвертировать документы в форматы текущих информационных систем.

    Иногда миграция информационных ресурсов на другие платформы по какой-то причине представляется нереальной или может существенно исказить оригиналы электронных документов. Это, в первую очередь, относится к сложноструктурным и многоформатным ресурсам: документам из систем автоматизации проектных работ (САПР) и геоинформационных систем, мультимедиа-продуктам и т.п. В таких ситуациях можно использовать эмуляторы программной среды, что, впрочем, бывает непросто сделать, так как они могут быть разработаны не для всех программных оболочек. Именно поэтому при разработке информационных систем следует изначально ориентироваться не только на распространенные форматы хранения, но и на распространенные операционные системы, СУБД и другое программное обеспечение. В этом случае может быть проще найти необходимые эмуляторы, которые могут разрабатываться и поставляться на рынок самими производителями программного обеспечения. Например, операционные системы MS Windows\’95, 98, NT, 2000, XP поддерживают эмулятор операционной системы MS DOS. Так как это широко распространенные операционные системы, есть надежда, что корпорация Microsoft и в дальнейшем будет поддерживать эмуляторы своих старых ОС.

    Инкапсуляция — включение электронных документов в состав файлов межплатформенных форматов, например, в XML. В настоящее время американские архивисты рассматривают этот способ как наиболее оптимальный для обмена и долговременного хранения электронных документов, хотя вряд ли его можно считать панацеей от всех проблем.

    Следует отметить, что исследования, связанные с применением эмуляции и инкапсуляции при долговременном хранении электронных документов, носят пока единичный характер. Даже если вскоре и будут предложены некоторые методики, потребуется немало времени для их апробации. Поэтому единственным проверенным способом долговременного хранения электронных документов пока остается миграция.

Обеспечение аутентичности (подлинности) электронных документов

Со способами обмена электронными документами и методами обеспечения их долговременного хранения тесно связаны проблемы обеспечения их аутентичности.

До сих пор главным средством аутентификации электронной документации служат протоколы аудита сетевых ресурсов. С их помощью можно проследить историю документов и выявить случаи несанкционированного доступа к ним. Однако слабым местом такой системы аутентификации являются сами протоколы, находящиеся в практически бесконтрольной власти сетевых администраторов.

Другая проблема — обеспечение аутентичности в межсетевом (межкорпоративном) пространстве. Без четких представлений о происхождении электронных документов и твердых гарантий их целостности суды отказываются признать за ними доказательную силу и принимать в качестве письменных свидетельств. Обмен электронными документами осуществляется на доверительной основе (например, электронная почта) и их достоверность гарантируется лишь авторитетом владельца информационного ресурса или электронного адреса. В свое время именно нерешенность вопросов аутентичности и целостности электронных документов помешала реализации идей «безбумажного офиса».

С середины 1990-х гг. наметился заметный прогресс в аутентификации электронных данных, в технологическом и правовом отношениях. Все большее распространение получают электронные средства защиты целостности данных и их идентификации с определенным физическим лицом — так называемые цифровые (электронные, электронные цифровые) подписи и печати, электронные «водяные знаки», контрольные суммы файлов и т.п.

Все множество цифровых подписей условно можно свести к двум классам:

  1. с использованием биометрических параметров человека — отпечатков пальцев, тембра голоса, радужной оболочки глаз и т.п.;
  2. с применением методов криптографии. Последний класс получил название — «электронная цифровая подпись» (ЭЦП). Именно ЭЦП считается наиболее надежным средством аутентификации в межкорпоративном электронном пространстве.

В правовом отношении ЭЦП долгое время находила применение лишь в частноправовой сфере. Для ее применения необходимо было заключение двусторонних или многосторонних договоров (на бумаге), в которых определялись все нюансы генерации, верификации, хранения ЭЦП и ответственность сторон. Рубеж веков стал периодом массового правового признания электронных средств аутентификации в открытых информационных сетях. Законы об ЭЦП или электронном документе были приняты в большинстве развитых и многих развивающихся странах.

Правовое признание ЭЦП превращает этот реквизит в надежное средство, обеспечивающее аутентичность и целостность электронных документов, однако только тех, которые находятся в оперативном использовании, со сроком хранения пять, максимум 10 лет. Для аутентификации документов на протяжении десятков лет ЭЦП не годится. Чтобы понять, почему это происходит, нужно несколько слов сказать о том, что собой представляют технологии криптографической аутентификации и защиты информации, определяемые законодательством как «аналог собственноручной подписи».

Российский закон об ЭЦП помогает раскрыть сущность этой технологии. В нем ЭЦП определяется как «реквизит электронного документа, предназначенный для защиты данного электронного документа от подделки, полученный в результате криптографического преобразования информации с использованием закрытого ключа электронной цифровой подписи и позволяющий идентифицировать владельца сертификата ключа подписи, а также установить отсутствие искажения информации в электронном документе» (ст. 3).

ЭЦП выглядит как последовательность цифр и других символов, что, собственно, и позволяет говорить о ней как о реквизите, обособленном от других реквизитов электронного документа. Технологически ЭЦП возникает в результате выполнения системой криптозащиты так называемого асимметричного алгоритма шифрования, т.е. шифрования с использованием ключа (опять же последовательность цифр), который отличается от ключа, применяемого потом для расшифрования сообщений. Первый ключ называется закрытым (тайным, личным) ключом. Им может владеть только тот человек, от лица которого документ подписывается. Второй ключ — открытый, его значение может узнать любой, кому необходимо удостовериться в подлинности ЭЦП. Эта пара ключей взаимосвязана, но при этом закрытый ключ не может быть за обозримое время вычислен, исходя из значения открытого ключа. Таким образом, использование открытого ключа при аутентификации надежно связывает подписанный документ с обладателем закрытого ключа.

В то же время особенностью ЭЦП, которая отличает ее от собственноручной подписи человека, является то, что идентифицирует она не столько лицо, подписавшее электронный документ, сколько конкретный документ: два разных документа, подписанные с использованием одного и того же закрытого ключа, будут иметь разные числовые выражения ЭЦП. Связано это с тем, что, кроме закрытого ключа, в алгоритм вычисления ЭЦП включены и другие параметры, в первую очередь, так называемый хэш-код файла/ов с электронным документом.

Алгоритмы хэширования информации реализуются с помощью хэш-функций, которые в криптографии относятся к разряду однонаправленных, т.е. таких, которые достаточно легко высчитать, но очень непросто обратить. При использовании качественной хэш-функции вероятность получения одного и того же хэш-кода для двух различных файлов ничтожно мала. Именно хэш-код электронного документа гарантирует его целостность — то, что после подписания документа можно будет легко установить, вносились ли в него изменения или нет. Удобство хэш-функций при вычислении ЭЦП заключается также в том, что они преобразовывают цифровые последовательности (файлы) разнообразной длины в последовательности (хэш-коды) фиксированной длины в 56, 64 и т.п. бит информации. Этим самым экономятся вычислительные ресурсы пользовательских компьютеров.

Идею асимметричного шифрования выдвинули в 1976 г. американские криптографы У. Диффи и М. Хеллман. Тогда же появился RSA, широко используемый и в настоящее время алгоритм шифрования с открытым ключом. В нашей стране в 1994 г. были изданы ГОСТ 34.10 на генерацию и верификацию ЭЦП и ГОСТ 34.11 на хэширование информации. С 1 июля 2002 г. действует новый ГОСТ 34.10-2001, который в два раза увеличил длину ключа подписи (до 1024 бита). Большинство существующих на российском рынке средств ЭЦП основаны именно на этих стандартах.

Существуют разные технологии приложения ЭЦП к электронному документу. Одни из них дописывают хэш-код, подпись и другие, связанные с ними реквизиты (например, отметку о времени подписания), непосредственно в файл с документом. Другие размещают эту информацию в связанных с документом файлах. Во многом именно по этой причине ЭЦП, сгенерированную в одной системе криптозащиты, невозможно проверить в другой системе, даже если они основаны на одних и тех же алгоритмах шифрования. Кроме этого, российские средства ЭЦП — «Верба», «Криптон», «Крипто-Про», «Корвет», «ЛАН Крипто» — часто реализуют различные протоколы (правила) аутентификации, что также не способствует их совместимости. Таким образом, подлинность подписи лучше проверять тем же средством ЭЦП, с помощью которого она была сгенерирована.

Следует также отметить, что подтверждение подлинности ЭЦП — процесс технологически кратковременный. Он зависит от жизненного цикла средства ЭЦП — конкретной системы криптографической защиты данных. В частности, аутентификация электронного документа становится невозможной после смены технологической платформы или бесполезной после утраты юридической силы сертификата средства ЭЦП. Это значит, что под вопросом оказывается подлинность документов, подписанных ранее.

Немаловажен и вопрос о стойкости ЭЦП, которая в первую очередь зависит от длины открытого ключа подписи. В середине 1970-х гг. считалось, что для разложения на множители числа из 125 цифр потребуются десятки квадрильонов лет. Однако всего через два десятилетия с помощью нескольких тысяч компьютеров, соединенных через Интернет, удалось разложить число из 129 цифр. Это стало возможным благодаря как новым методам разложения больших чисел, так и возросшей производительности компьютеров и объединения их в глобальные вычислительные сети. В настоящее время при расчете стойкости алгоритмов генерации и верификации ЭЦП во внимание принимается срок ответственности по основным банковским операциям. А он не превышает пяти лет. Например, первый ГОСТ Р 34.10-94 использовал 512-битный алгоритм шифрования. ГОСТ Р 34.10-2001 использует уже 1024-битный алгоритм. По мнению экспертов, данный ГОСТ сможет сохранить устойчивость к вскрытию лишь в ближайшие 5 — 6 лет. То есть через 10 — 15 лет никто не гарантирует, что ЭЦП, сгенерированная с использованием этого ГОСТа, не была фальсифицирована неделю назад.

Но главная проблема при аутентификации электронных документов, подписанных ЭЦП, состоит в том, что этот реквизит (как и значение отдельного хэш-кода или контрольной суммы, гарантирующих целостность документа) неразрывно связан с форматом документа. При переформатировании электронного документа (что неизбежно при долговременном хранении) проверка подлинности ЭЦП становится бессмысленной.

Наиболее приемлемым методом обеспечения аутентичности электронных документов при долговременном хранении (особенно заверенных ЭЦП) можно было бы считать применение эмуляторов или конверторов при их воспроизведении. Но подобная практика пока мало изучена. Проблемы здесь видятся как в ограниченном наборе этих программных средств, так и в возможных ошибках воспроизведения документов, которые могут возникать при эмуляции или конвертировании, что опять-таки негативно сказывается на доказательной силе электронных документов при долговременном хранении. Инкапсуляция, вероятно, самый перспективный способ. Именно способ решения проблемы аутентичности электронных документов видят в нем американские архивисты. Но он требует долговременной апробации и дальнейшего развития.

Необходимость переформатирования электронных документов при долговременном хранении приводит к тому, что, по существу, появляется другой документ с измененными реквизитами и контрольными характеристиками: датой последнего сохранения, объемом, контрольной суммой, хэш-кодом, ЭЦП и т.п. Получается, что подлинник электронного документа будет невозможно прочитать и использовать, а его миграционная копия не будет иметь юридической силы.

Отмеченная проблема — обеспечение аутентичности электронных документов в долговременной перспективе — на сегодняшний день, пожалуй, самая острая и сложная. Четких рекомендаций, как ее решить, пока нет ни в нашей стране, ни за рубежом. Сейчас выход видится в одном: не стоит на этапе делопроизводства создавать, а затем хранить исключительно в электронном виде документы, предполагающие длительный срок хранения и серьезную ответственность сторон. Желательно одновременно создавать и хранить этот официальный документ также на бумажном носителе.

В условиях нерешенности технологических проблем аутентификации электронной информации на первое место выходит «старый дедовский метод»: удостоверение подлинности электронных документов при передаче их на внешних носителях в архив с помощью документов на бумаге, оформленных в соответствии с требованиями ГОСТ 6.10.4-84 и ГОСТ 28388-89. Указанные ГОСТы технологически и концептуально давно устарели, многие их положения на практике просто не выполнимы. Однако они по-прежнему действуют и включают в себя рациональное ядро, которое можно использовать при разработке формы удостоверяющего документа. Подобный документ (удостоверяющий лист, сопроводительное письмо, акт приема-передачи документов или т.п.) должен включать идентификационные характеристики файлов и электронного носителя и быть заверенным подписями должностных лиц и печатью.

Залог успеха

Таким образом, анализ природы электронных документов позволяет определить несколько условий, выполнение которых обеспечивает их сохранность и возможности использования на протяжении десятков лет:

  1. В архив должны приниматься и храниться «информационные объекты» (файлы), включающие, главным образом, содержательную и контекстную информацию (данные). Прием на хранение информационных ресурсов в комплекте с исполняемыми программами (оболочками прикладных информационных систем) со временем может вызвать правовые и технологические проблемы их использования. Прием компьютерных программ необходим в исключительных случаях, когда без этого невозможно воспроизведение принимаемых на хранение электронных документов.
  2. В краткосрочной перспективе (5-10 лет) сохранность документов обеспечивается созданием резервного и рабочего экземпляров электронных документов на отдельных носителях.
  3. В долговременной перспективе (более 10 лет) необходимо проведение миграции документов в так называемые программно независимые форматы (страховые форматы), причем таким образом, чтобы в дальнейшем полученное поколение документов можно было признать подлинниками.
  4. Электронные документы в страховых форматах могут оказаться очень неудобными в использовании и могут значительно замедлять время доступа пользователей к архивной информации. Оперативность доступа к архивным электронным документам может обеспечиваться тем, что они будут приниматься, храниться и/или своевременно переводиться в форматы текущей информационной системы организации/архива — пользовательские форматы. Процедура миграции в пользовательские форматы также должна быть ориентирована на возможное признание полученных документов подлинниками. Эта мера необходима в связи с тем, что заранее трудно определить, какие из форматов (страховые, пользовательские или те, в которых документы приняты на хранение) могут стать основой для создания миграционных страховых копий последующих поколений.
  5. При обеспечении сохранности электронных документов большое внимание следует также уделять вопросам информационной безопасности: обеспечению их аутентичности, защите от вредоносных компьютерных программ (вирусов) и от несанкционированного доступа.

В следующем номере читайте продолжение статьи. Будут рассмотрены вопросы организации учета и описания электронных документов при их долговременном хранении.

1 См., например: Через пару лет информация с CD-R исчезнет (http://www.rambler.ru/db/news/msg.html?mid=4528814&s=5).

2 2 См.: ISO 18923, 18925, 18933.

3 См.: ISO 18923:2000. Imaging Materials. Polyester-Base Magnetic Tape. Storage Practices (Полиэфирные магнитные ленты. Правила хранения); ISO 18927:2002. Imaging Materials. Recordable Compact Disc Systems. Method for Estimating the Life Expectancy Based on the Effects of Temperature and Relative Humidity (Компакт-диски с однократной записью информации. Метод оценки долговечности, основанный на эффектах связанных с температурой и влажностью); ISO 18925:2002. Imaging Materials. Optical Disc Media. Storage practices (Оптические диски. Правила хранения).

4 См: INFORMATION MANAGEMENT. Challenges in Managing and Preserving Electronic Records. GAO. United States General Accounting Office. Report to Congressional Requesters. June 2002. GAO-02-586.

5 См.: Анин Б.Ю. Защита компьютерной информации. СПб., 2000. С. 121.

6 ГОСТ 6.10.4-84. Придание юридической силы документам на машинном носителе и машинограмме, создаваемым средствами вычислительной техники. Основные положения. М., 1985; ГОСТ 28388-89. Системы обработки информации. Документы на магнитных носителях данных. Порядок выполнения и обращения. М., 1990.


Для хранения и переноса информации с одного компьютера на другие удобно использовать внешние носители. В качестве носителей информации чаще всего выступают оптические диски (CD, DVD, Blu-Ray), флеш-накопители (флешки) и внешние жесткие диски. В этой статье мы разберем виды внешних носителей информации и ответим на вопрос «На чем хранить данные?»

Сейчас оптические диски постепенно отходят на второй план и это понятно. Оптические диски позволяют записать относительно небольшое количество информации. Также удобство использования оптического диска оставляет желать лучше, к тому же диски можно легко повредить, поцарапать, что приводит к потере читаемости диска. Однако для длительного хранения медиаинформации (фильмов, музыки) оптические диски подходят как никакой другой внешний носитель. Все медиацентры и видеопроигрыватели по-прежнему воспроизводят оптические диски.

Флешки

Флеш-накопители или по-простому «флешка» сейчас пользуется наибольшим спросом у пользователей. Ее малый размер и внушительные объемы памяти (до 64Гб и более) позволяют использовать для различных целей. Чаще всего флешки подключаются к компьютеру или медиацентр через порт USB. Отличительной особенность флешек является высокая скорость чтения и записи. Флешка имеет пластиковый корпус, внутрь которого помещена электронная плата с чипом памяти.

USB-флешки

К разновидностью флешек можно отнести карты памяти, которые с картриддером являются полноценной USB-флешкой. Удобство использование такого тандема позволяет хранить значительные объемы информации на различных картах памяти, которые будет занимать минимум места. К тому же вы всегда можете прочитать карту памяти вашего смартфона, фотоаппарата.


Флешки удобно использовать в повседневной жизни – переносить документы, сохранять и копировать различные файлы, просматривать видео и прослушивать музыку.

Внешние жесткие диски

Внешние жесткие диски технически представляют собой жесткий диск, помещенный в компактный корпус с USB адаптером и системой защиты от вибрации. Как известно жесткие диски обладают впечатляющими объемами дискового пространства, что в купе с мобильностью делает их очень привлекательными. На внешнем жестком диске вы сможете хранить всю свою видео и аудиоколлекцию. Однако для оптимальной работы внешнего жесткого диска требуется повышенная мощность питания. Один разъем USB не в силе обеспечить полноценное питание. Вот почему на внешних жестких дисках имеется двойной кабель USB. По габаритам внешние жесткие диски совеем небольшие, и могут легко поместиться в обычном кармане.

HDD боксы

Существуют HDD боксы, предназначенные для использования в качестве носителя информации обычный жесткий диск (HDD). Такие боксы представляют собой коробку с контроллером USB, к которому подключаются самые простые жесткие диски стационарного компьютера.

Таким образом, вы легко можете переносить информацию непосредственно с жесткого диска вашего компьютера напрямую, без дополнительного копирования и вставки. Такой вариант будет намного дешевле покупки внешнего жесткого диска, особенно если перенести на другой компьютер нужно почти весь раздел жесткого диска.

Запоминающее устройство - носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Устройства хранения информации делятся на 2 вида:

    внешние (периферийные) устройства

    внутренние устройства

К внешним устройствам относятся магнитные диски, CD,DVD,BD,cтримеры,жесткий диск(винчестер),а также флэш-карта. Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.

К внутренним устройствам относятся оперативная память, кэш-память, CMOS-память, BIOS. Главным достоинством является скорость обработки информации. Но в то же время устройства внутренней памяти довольно дорогостоящи.

НГМД (накопитель на гибких магнитных дисках)

Использование гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25" или 3,5". Дискеты формата 5,25" в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5" максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью. Все дискеты перед употреблением форматируются – на них наносится служебная информация, обе поверхности дискеты разбиваются на концентрические окружности – дорожки, которые в свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.

НЖМД (накопитель на жестких магнитных дисках)

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного ПК. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью.Основные принципы работы жесткого диска мало изменились со дня его создания.Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли. Кроме того, корпус экранирует накопитель от электромагнитных помех.

Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из

керамики или стекла, покрытую тонким ферромагнитным слоем. Магнитные головки считывают и записывают информацию на диски. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.

Основные параметры жесткого диска:

    Емкость – винчестер имеет объем от 40 Гб до 200 Гб.

    Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.

    Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.

    Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.

    Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.

    Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.

Стримеры

лассическим способом резервного копирования является применение стримеров – устройств

записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.

Flash-карта

Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении.

Multimedia Card (MMC) и Secure Digital (SD) – сходит со сцены из-за ограниченной емкости (64 Мб и 256 Мб соответственно) и низкой скорости работы.

SmartMedia – основной формат для карт широкого применения (от банковских и проездных в метро до удостоверений личности). Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МРЗ-устройств.

Memory Stick – “эксклюзивный” формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость – 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие.

CompactFlash (CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография. По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с).

USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Основные параметры (емкость и скорость работы) полностью совпадают с CompactFlash, поскольку чипы самой памяти остались прежними. Может служить не только “переносчиком” файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. Низкое среднее время доступа к данным на Flash-диске – менее 2,5 мс. Вероятно, накопители класса USB Flash Drive, особенно с интерфейсом USB 2.0, в перспективе смогут полностью заменить собой обычные дискеты и частично – перезаписываемые компакт-диски, носители Iomega ZIP и им подобные.

PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров. В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Для PC Card возможна обратная совместимость по разъемам “сверху вниз”. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском.

Человек хранит информацию в собственной памяти, а также в виде записей на различных внешних (по отношению к человеку) носителях: на камне, папирусе, бумаге, магнитных и оптических носителях и пр. Благодаря таким записям информация передается не только в пространстве (от человека к человеку), но и во времени - из поколения в поколение.

Разнообразие носителей информации

Информация может храниться в различных видах: в виде текстов, в виде рисунков, схем, чертежей; в виде фотографий, в виде звукозаписей, в виде кино- или видеозаписей. В каждом случае применяются свои носители. Носитель - это материальная среда, используемая для записи и хранения информации.

К основным характеристикам носителей информации относятся: информационный объем или плотность хранения информации, надежность (долговечность) хранения.

Бумажные носители

Носителем, имеющим наиболее массовое употребление, до сих пор остается бумага . Изобретенная во II веке н.э. в Китае, бумага служит людям уже 19 столетий.

Для сопоставления объемов информации на разных носителях будем пользоваться универсальной единицей - байт , считая, что один символ текста “весит” 1 байт. Книга, содержащая 300 страниц, при размере текста на странице примерно 2000 символов имеет информационный объем 600 000 байт, или 586 Кб. Информационный объем средней школьной библиотеки, фонд которой составляет 5000 томов, приблизительно равен 2861 Мб = 2,8 Гб.

Что касается долговечности хранения документов, книг и прочей бумажной продукции, то она очень сильно зависит от качества бумаги, от красителей, используемых при записи текста, от условий хранения. Интересно, что до середины XIX века (с этого времени в качестве бумажного сырья начали использовать древесину) бумага делалась из хлопка и текстильных отходов - тряпья. Чернилами служили натуральные красители. Качество рукописных документов того времени было довольно высоким, и они могли храниться тысячи лет. С переходом на древесную основу, с распространением машинописи и средств копирования, с использованием синтетических красителей срок хранения печатных документов снизился до 200–300 лет.

Магнитные носители

В XIX веке была изобретена магнитная запись. Первоначально магнитная запись использовалась только для сохранения звука. Самым первым носителем магнитной записи была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Качественные характеристики всех этих носителей были весьма низкими. Для производства 14-часовой магнитной записи устных докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км, или около 100 кг проволоки.

В 20-х годах прошлого века появляется магнитная лента сначала на бумажной, а позднее - на синтетической (лавсановой) основе, на поверхность которой наносится тонкий слой ферромагнитного порошка. Во второй половине XX века на магнитную ленту научились записывать изображение, появляются видеокамеры, видеомагнитофоны.

На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. На одну катушку с магнитной лентой, использовавшейся в лентопротяжных устройствах первых ЭВМ, помещалось приблизительно 500 Кб информации.

С начала 1960-х годов в употребление входят компьютерные магнитные диски : алюминиевый или пластмассовый диск, покрытый тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам. Магнитные диски бывают жесткими и гибкими, бывают сменными и встроенными в дисковод компьютера. Последние традиционно называют винчестерами, а сменные гибкие диски - флоппи-дисками.

“Винчестер” компьютера - это пакет магнитных дисков, надетых на общую ось . Информационная емкость современных винчестеров измеряется в гигабайтах - десятки и сотни Гб. Наиболее распространенный тип гибкого диска диаметром 3,5 дюйма вмещает 2 Мб данных. Флоппи-диски в последнее время выходят из употребления.

В банковской системе большое распространение получили пластиковые карты. На них тоже используется магнитный принцип записи информации, с которой работают банкоматы, кассовые аппараты, связанные с информационной банковской системой.

Оптические носители

Применение оптического, или лазерного, способа записи информации начинается в 1980-х годах. Его появление связано с изобретением квантового генератора - лазера, источника очень тонкого (толщина порядка микрона) луча высокой энергии. Луч способен выжигать на поверхности плавкого материала двоичный код данных с очень высокой плотностью. Считывание происходит в результате отражения от такой “перфорированной” поверхности лазерного луча с меньшей энергией (“холодного” луча). Благодаря высокой плотности записи оптические диски имеют гораздо больший информационный объем, чем однодисковые магнитные носители. Информационная емкость оптического диска составляет от 190 до 700 Мб. Оптические диски называются компакт-дисками - CD.

Во второй половине 1990-х годов появились цифровые универсальные видеодиски DVD (D igital V ersatile D isk ) с большой емкостью, измеряемой в гигабайтах (до 17 Гб). Увеличение их емкости по сравнению с CD связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи. Вспомните пример со школьной библиотекой. Весь ее книжный фонд можно разместить на одном DVD.

В настоящее время оптические диски (CD - DVD) являются наиболее надежными материальными носителями информации, записанной цифровым способом. Эти типы носителей бывают как однократно записываемыми - пригодными только для чтения, так и перезаписываемыми - пригодными для чтения и записи.

Флэш-память

В последнее время появилось множество мобильных цифровых устройств: цифровые фото- и видеокамеры, МР3-плееры, карманные компьютеры, мобильные телефоны, устройства для чтения электронных книг, GPS-навигаторы и многое другое. Все эти устройства нуждаются в переносных носителях информации. Но поскольку все мобильные устройства довольно миниатюрные, то и к носителям информации для них предъявляются особые требования. Они должны быть компактными, обладать низким энергопотреблением при работе и быть энергонезависимыми при хранении, иметь большую емкость, высокие скорости записи и чтения, долгий срок службы. Всем этим требованиям удовлетворяют флэш-карты памяти. Информационный объем флэш-карты может составлять несколько гигабайт.

В качестве внешнего носителя для компьютера широкое распространение получили флэш-брелоки (“флэшки” - называют их в просторечии), выпуск которых начался в 2001 году. Большой объем информации, компактность, высокая скорость чтения-записи, удобство в использовании - основные достоинства этих устройств. Флэш-брелок подключается к USB-порту компьютера и позволяет скачивать данные со скоростью около 10 Мб в секунду.

“Нано-носители”

В последние годы активно ведутся работы по созданию еще более компактных носителей информации с использованием так называемых “нанотехнологий”, работающих на уровне атомов и молекул вещества. В результате один компакт-диск, изготовленный по нанотехнологии, сможет заменить тысячи лазерных дисков. По предположениям экспертов приблизительно через 20 лет плотность хранения информации возрастет до такой степени, что на носителе объемом примерно с кубический сантиметр можно будет записать каждую секунду человеческой жизни.

Организация информационных хранилищ

Информация сохраняется на носителях для того, чтобы ее можно было просматривать, искать нужные сведения, нужные документы, пополнять и изменять, удалять данные, потерявшие актуальность. Иначе говоря, хранимая информация нужна человеку для работы с ней. Удобство работы с такими информационными хранилищами сильно зависит от того, как информация организована.

Возможны две ситуации: либо данные никак не организованы (такую ситуацию иногда называют кучей), либо данные структурированы . С увеличением объема информации вариант “кучи” становится все более неприемлемым из-за сложности ее практического использования (поиска, обновления и пр.).

Под словами “данные структурированы” понимается наличие какой-то упорядоченности данных в их хранилище: в словаре, расписании, архиве, компьютерной базе данных. В справочниках, словарях, энциклопедиях обычно используется линейный алфавитный принцип организации (структурирования) данных.

Крупнейшими хранилищами информации являются библиотеки. Упоминания о первых библиотеках относятся к VII веку до н.э. С изобретением книгопечатания (XV век) библиотеки стали распространяться по всему миру. В библиотечном деле имеется многовековой опыт организации информации.

Для организации и поиска книг в библиотеках создаются каталоги: списки книжного фонда. Первый библиотечный каталог был создан в знаменитой Александрийской библиотеке в III веке до н.э. С помощью каталога читатель определяет наличие в библиотеке нужной ему книги, а библиотекарь находит ее в книгохранилище. При использовании бумажной технологии каталог - это организованный набор картонных карточек со сведениями о книгах.

Существуют алфавитные и систематические каталоги. В алфавитных каталогах карточки упорядочены в алфавитном порядке фамилий авторов и образуют линейную (одноуровневую ) структуру данных . В систематическом каталоге карточки систематизированы по тематике содержания книг и образуют иерархическую структуру данных . Например, все книги делятся на художественные, учебные, научные. Учебная литература делится на школьную и вузовскую. Книги для школы делятся по классам и т.д.

В современных библиотеках происходит смена бумажных каталогов на электронные. В таком случае поиск книг осуществляется автоматически информационной системой библиотеки.

Данные, хранящиеся на компьютерных носителях (дисках), имеют файловую организацию. Файл подобен книге в библиотеке. Аналогично библиотечному каталогу операционная система создает каталог диска, который хранится на специально отведенных дорожках. Пользователь ищет нужный файл, просматривая каталог, после чего операционная система находит этот файл на диске и предоставляет пользователю. На первых дисковых носителях небольшого объема использовалась одноуровневая структура хранения файлов. С появлением жестких дисков большого объема стали использовать иерархическую структуру организации файлов. Наряду с понятием “файл” появилось понятие папки (см. “Файлы и файловая система ”).

Более гибкой системой организации хранения и поиска данных являются компьютерные базы данных (см. Базы данных ”).

Надежность хранения информации

Проблема надежности хранения информации связана с двумя видами угроз для хранимой информации: разрушение (потеря) информации и кража или утечка конфиденциальной информации. Бумажные архивы и библиотеки всегда были подвержены опасности физического исчезновения. Огромный ущерб для цивилизации принесло разрушение упомянутой выше Александрийской библиотеки в I веке до н.э., поскольку большая часть книг в ней существовала в единственном экземпляре.

Основной способ защиты информации в бумажных документах от потери - их дублирование. Использование электронных носителей делает дублирование более простым и дешевым. Однако переход на новые (цифровые) информационные технологии создал новые проблемы защиты информации.

В процессе изучения курса информатики ученики приобретают определенные знания и умения, относящиеся к хранению информации.

Ученики осваивают работу с традиционными (бумажными) источниками информации. В стандарте для основной школы отмечается, что ученики должны научиться работать с некомпьютерными источниками информации: справочниками, словарями, каталогами библиотек. Для этого их следует ознакомить с принципами организации этих источников и с приемами оптимального поиска в них. Поскольку данные знания и умения имеют большое общеучебное значение, то желательно дать их ученикам как можно раньше. В некоторых программах пропедевтического курса информатики этой теме уделяется большое внимание.

Ученики должны овладеть приемами работы со сменными компьютерными носителями информации. Все реже в последнее время используются гибкие магнитные диски, на смену которым пришли емкие и быстрые флэш-носители. Ученики должны уметь определять информационную емкость носителя, объем свободного пространства, сопоставлять с ним объемы сохраняемых файлов. Ученики должны понимать, что для длительного хранения больших объемов данных наиболее подходящим средством являются оптические диски. При наличии пишущего CD-дисковода следует научить их организации записи файлов.

Важным моментом обучения является разъяснение опасностей, которым подвергается компьютерная информация со стороны вредоносных программ - компьютерных вирусов. Следует научить детей основным правилам “компьютерной гигиены”: осуществлять антивирусный контроль всех вновь поступающих файлов; регулярно обновлять базы антивирусных программ.